Epidemic Model with Isolation in Multilayer Networks

نویسندگان

  • L. G. Alvarez Zuzek
  • H. E. Stanley
  • L. A. Braunstein
چکیده

The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter w to measure the effect of quarantining infected individuals from both layers during an isolation period tw. We call this process the Susceptible-Infected-Isolated-Recovered (SIIR) model. Using the framework of link percolation we find that isolation increases the critical epidemic threshold of the disease because the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and tw. When the isolation period is maximum there is a critical threshold for w above which the disease never becomes an epidemic. We simulate the process and find an excellent agreement with the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidemic spreading and bond percolation in multilayer networks

The Susceptible-Infected-Recovered (SIR) model is studied in multilayer networks with arbitrary number of links across the layers. By following the mapping to bond percolation we give the exact expression for the epidemic threshold and the fraction of the infected individuals in arbitrary number of layers. The case of a multilayer network formed by two interconnected networks is specifically st...

متن کامل

Immunization strategy for epidemic spreading on multilayer networks

In many real-world complex systems, individuals have many kinds of interactions among them, suggesting that it is necessary to consider a layered-structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this letter we study a targeted...

متن کامل

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

Application of multilayer perceptron neural network and support vector machine for modeling the hydrodynamic behavior of permeable breakwaters with porous core

In this research, the application of multilayer perceptron (MLP) neural networks and support vector machine (SVM) for modeling the hydrodynamic behavior of Permeable Breakwaters with Porous Core has been investigated. For this purpose, experimental data have been used on the physical model to relate the reflection and transition coefficients of incident waves as the output parameters to the wid...

متن کامل

Study on the impact of multiple prevention strategies on COVID-19 pandemic

Background:Today, with the coronavirus pandemic, the governments and international institutions are rapidly taking various approaches to infection control. In the meantime, the care of healthcare workers who are responsible for the health and treatment of patients is very important. The COVID-19 epidemic in China has achieved a great victory, and it is important to summarize the successful anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015